
screen in thetwo-phase medium make inverse screens ineffective for decreasing the param- 
eters of shock waves. 
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STRUCTURE OF COMPRESSION AND RAREFACTION WAVES IN A VAN DER WAALS 

GAS WITH CONSTANT SPECIFIC HEAT 

A. A. Borisov and G. A. Khabakhpashev UDC 532.592+534.222+536.441 

It is known [i] that the change in entropy in shocks of weak intensity is proportional 
to the change in specific volume to the third power: S2 -- Sl = (~2p/%V2)(VI -- V2)s/12TI, 
where p is the pressure, V is the specific volume, T is the temperature, and the subscripts 
1 and 2 denotes values of the quantities in front of and behind the front, respectively. 
In an ideal gas, as well as in the majority of actually realizable situations, (~2p/3V2) s > 
O. Therefore, the condition of entropy growth allows the existence of compression shocks 
and forbids the existence of rarefaction shocks (Zemplen theorem), 

However, Zel'dovich [2] has shown that near the fluid-vapor critical point, (a2p/3V2) S 
can be less than zero under definite conditions. In this domain of anomalous thermodynamic 
properties, compression waves should be spread out in time, while rarefaction waves are 
propagated in the form of (rare) shocks. A more complex case, in which the unperturbed 
state is in the domain of anomalous thermodynamic properties while the perturbed state is 
outside (or conversely), has been considered theoretically in a number of papers, a detailed 
summary of which is given in [3]. The main attention in these papers is given over to an 
analysis of the wave adiabats of such media. The question of the existence of exact self- 
similar solutions of the problem under consideration has not yet been investigated. An 
evolutionary equation has been obtained in [4] for long-wave perturbations of finite ampli- 
tude which can be used to explain the possible multiwave structure of rarefaction waves. 

The first experiment to study the propagation of finite-amplitude perturbations in the 
critical domain was performed on a "shock tube" type apparatus [5]. The rarefaction wave 
profiles were determined in this experiment, hence it is desirable to obtain the theoretical 
results also in analogous form. In this connection, the question of the pressure wave struc- 
ture near the fluid--vapor critical point is investigated in this paper by using a numerical 
solution of the problem of the dissociation of an arbitrary discontinuity. 
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i. The behavior of real substances whose state is not in direct proximity to the 
critical point or in a two-phase domain is described well by the van der Waals model [6]. 
The van der WaaZs equation of state is ordinarily written in the form 

@ + a/r~)(V - -  b) = R~T, ( 1 . 1 )  

where a and b are van der Waals constants, R G = R/~, R is the universal gas constant, and 
is the molecular mass. 

Let the isochoric specific heat C V be constant. (This assumption is valid in the same 
domain of parameters where the van der Waals equation is applicable.) We then have for the 
specific internal energy [7] 

E --- C v T -- a/V. (1.2) 

Moreover, let us examine the isentroplc and shock adiabat equations. The equation of 
the isentropic adiabat for a van der Waals gas with constant specific heat can be written 
in the form 

P* = (Po + 3/v~)[(v 0 - -  i / 3 ) / ( v -  1/3)] ~ - - 3 / v  ~, ( 1 . 3 )  

where  p* = P /Pk ;  v = V/Ok; y = 1 + 1 / c o ;  c v = cv/RG; and s u b s c r i p t  k d e n o t e s  t he  c r i t i c a l  
v a l u e s  o f  t he  the rmodynamic  p a r a m e t e r s ,  and t h e  s u b s c r i p t  0 the  i n i t i a l  v a l u e s .  

Le t  us a l s o  w r i t e  a d i m e n s i o n l e s s  e x p r e s s i o n  f o r  (a2p/aV2)  s 

(aSp * lavgs = ~(? + t)(p* + 31v2)/(v -- t13) 2 -- i81v 4. 

The b e h a v i o r  o f  t h e  a d i a b a t  and t he  b o u n d a r y  o f  t he  domain o f  anomalous  thermodynamic  
p r o p e r t i e s  i s  shown in  F i g .  1 f o r  c V : 20 ( c u r v e s  1 and 2, r e s p e c t i v e l y ) ,  and c V = 30 
( c u r v e s  1 '  and 2 ' ) .  The b o u n d a r y  o f  t h e  domain o f  t w o - p h a s e  s t a t e s  i s  d i s p l a y e d  by the  
dashed  l i n e .  I t  s h o u l d  be n o t e d  t h a t  s i n g l e - p h a s e  s t a t e s  e x i s t  i n  t h e  domain o f  anomalous  
thermodynamic properties only for c v > 50/3. 

The dimensionless shock adiabat equation for a van der Waals gas with constant specific 
heat can be written in the form 

p* : [2p0ev (v 0 -  t/3) - -  Po (v - -  v0) - -  6co (v - -  t13)/v 2 + ( 1 . 4 )  

+ 6cv~(v o - -  l/3)/v~ + 6 ( i lv  - -  t/Vo)]/[2Cv (v - -  t/3) -}- (v - -  vo)]. 

It is seen from a comparison of (1.3) and (1.4) that the shock adiabat equation is more 
complex than the isentroplc adiabat equation. However, these adiabats are practically in 
agreement in the pressure, volume, and specific heat range under consideration. This fact 
is used below for the foundation of the difference scheme. 

2. It is convenient to write the mass, momentum, and energy conservation laws for an 
arbitrary moving element of the medium through whose boundary there is no material flux in 
the numerical solution of the problem about dissociation of an arbitrary discontinuity. 
In the one-dlmenslonal case we have 

~ pdz  = 0; ( 2 . 1 )  

~ pudz -- pdt  = 0; (2.2) 

~p (E + u~/2) -- pudt = (2.3) dz 0 

(p is the density and u is the velocity of the medium). Dissipative terms are not taken 
into account in (2.2) and (2.3) since the "viscosity" and "heat conductivity" inherent to 
the difference scheme itself turn out to be of the same order as the real viscosity and heat 
conductivity for an appropriate selection of the mesh spacings Ax and At. 

Let us consider an idealized model of a shock tube: A cylindrical tube with closed 
ends is separated into two compartments, high and low pressure compartments (HPC and LPC), 
by a baffle. At a certain time the baffle is burst and a compression wave is propagated 
into the LPC and a rarefaction wave into the HPC. We use the method of Godunov [8] to in- 
vestigate this process. 
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The difference analogs of (2.1)-(2.3) for the i-th cells can be written in the form 
# l I 

p, ax~ = p,Ax~ (az, = zt+i- z~, z, = x, + ~tAt); (2.4) 

p,A~, (~[ - ,,t) = ( ~ , -  ~t+3 At; (2 .  s )  

ptax~ (E~ - -  Et) = p~ ( ~  - -  ~t+l) at,  ( 2 . 6 )  

w h e r e  x i a n d  x i + t  a r e  c o o r d i n a t e s  o f  t h e  c e l l  b o u n d a r i e s  ( c o n t a c t  d i s c o n t i n u i t i e s ) ,  u i and  
ui+x are the velocities of the cell boundaries, Pi and Pi+t are the pressures on the cell 
boundaries. The quantities marked with primes refer to the time t' = t + At. For weak 
shocks and simple waves, good accuracy in evaluating 5i and Pi can be obtained by using the 
"sound approximation" [9] : 

ui = (Pt-1 - -  P~ -~- a~-lui-1 -~- aiui)/(at-1 + at); (2.7) 
p'~ = [ a t - l a i ( u i - 1 -  ui) -4-ai-lPi -k aiPt'll /(az-1 -k at), (2.8) 

where a i = Pici and c is the adiabatic speed of sound. The use of (2.7) and (2.8) is, more- 
over, justified in this paper by the agreement, noted above, between the shock and isen- 
tropic adiabat. 

Therefore, the system of equations (1.1)-(1.2) and (2.4)-(2.8) is mathematically closed 
and physically founded. The time spacing At for a numerical solution is selected in such a 
manner that the difference scheme would be stable and converge well. The question of the 
approximation and stability of such a difference scheme is examined in detail in [9]. 
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3. The results of computations are displayed in Figs. 2 and 3. The dimensionless 
coordinate E = x/Axo, where Axo is the initial size of the computational cell, and the di- 
mensionless time T = t/t,, where t, is the characteristic time of the process (the build-up 
time of the stationary shock ~rofile). The dimensionless pressure perturbation in the com- 
pression wave is ApT = p* -- pz, and in the rarefaction wave is Ap~ = p* -- p~ (pl and Ph are 

the initial pressure in the LPC and HPC, respectively). 

Shown in Fig. 2 is the evolution of the compression wave for c v = 30; a) the perturbed 
and unperturbed states are in the domain of anomalous thermodynamic properties (the initial 
parameters on the discontinuity are the following: p~ =(p~0.912, v Z = 1.54, ~i = 1.040, v h = 
i.ii); b) the unperturbed state is outside this domain = 0.846, v I = i. , p~ = 1.160, 

v h = 1.00); curves 1-4 correspond to the times ~ = i; i0; 20; 30. It is seen from Fig. 2a 
that the width of the compression wave front increases with time exactly as occurs for a 
rarefaction wave in an ideal gas. It is shown in Fig. 2b that the leading part of the wave- 
front corresponding to the domain of normal thermodynamic properties is diffused. 

Compression waves with diffused trailing section of the front have been observed only 
in media with relaxation up to now (the so-called partially dispersed waves) [i0]. However, 
the width of the diffused section remained constant there and was determined by the relaxa- 
tion time. In the case considered the width of the trailing part of the front is propor- 
tional to the path traversed by the wave. 

The evolution of a rarefaction wave for c V = 20 is shown in Fig. 3; a) the perturbed 
and unperturbed states are in the domain of anomalous thermodynamic properties (the initial 

* = 0.960 = parameters on the discontinuity are the following: p = 0.834, v Z = 2.00, Ph v h 

the perturbed state is outside this domain (p~ = 0.610, v I = 3.33, p~ = 0.960, 1.25); b) 

v h = 1.25); curves 1-4 correspond to the same times as in Fig. 2, and curve 5 to x = 40. 
It is seen from Fig. 3a that the width of the rarefaction wavefront does not increase with 
time, i.e., a rarefaction shock holds. It is shown in Fig. 3b that the leading part of the 
wavefront corresponding to the anomalous thermodynamic properties domain is diffuse, Both 
these kinds of rarefaction wave configuration have been predicted theoretically [i, 3] and 
observed in experiment [5, ill. 

The data of the computation can be compared with test only qualitatively because the 
unperturbed state of a substance in the HPC would be very close to the critical state in an 
experiment. Consequently, the anomalous behavior of the isochoric specific heat [12] 
apparently played a governing role in tests. Confirmation of this viewpoint might be the 
fact that the Freon-13 being used in experiment has a "background" (nonanomalous) specific 
heat c V ~ 8 [13], and as had been noted above, rarefaction shocks can exist in a van der 
Waals gas with constant specific heat, only for c V > 50/3. 
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Therefore, taking account of the anomalous behavior of the specific heat near the 
fluid--vapor critical point should result in significant expansion of the class of sub- 
stances in which rarefaction shocks can be propagated. Moreover, the results should not 
change qualitatively if a scale equation of state is used instead of the van der Waals 

equation. 

4. Let us compare the results obtained with the data on wave propagation in solids 
experiencing polymorphic transformation. Fragments with a smooth surface were observed in 
[14-16] during explosive loading of iron and steel specimens. This phenomenon is explained 
by the interaction of the rarefaction shocks. The existence of a rarefaction shock in 
solids experiencing polymorphic transformations is related to the fact that the presence of 
the phase transition results in the appearance of a section with convexity upward on the 
adiabat, i.e., a section on which the mean value of the second derivative of the pressure 
with respect to the volume for constant entropy is less than zero. The rarefaction wave 
profile consisting of the shock and the subsequent simple wave is presented in [16]. An 
analogous rarefaction wave structure is obtained in this paper. 

As regards the compression wave, in solids experiencing polymorphic transformations 
they are always propagated in the form of shocks (one or two). Compression waves consist- 
ing of a shock and a diffuse trailing part of the front which are possible near the fluid-- 
vapor critical point cannot be observed in solids. This is because at all points in solids 
where the adiabat has no singularities, (~2p/SV2) S > 0 [1]. 

Therefore, the similarity of processes occurring in solids experiencing polymorphic 
transformations, and near the fluid-vapor critical point, is related to the anomalous be- 
havior of the adiabat, while the distinction is associated with the different physical na- 
ture of this anomaly. If this is a phase transition in solids, then near the critical point 
it is a strong change in the thermodynamic properties (compressibility, etc.) of a single- 
phase substance. 

The authors are deeply grateful to Ya. B. Zel'dovlch and V. E. Nakoryakov for interest 
in this research and for critical remarks. 
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DETONATION OF A PHLEGMATIZED EXPLOSIVE 

L. V. Al'tshuler, V. V. Balalaev, 
G. S. Doronin, V. S. Zhuchenko, 
and A. S. Obukhov 

UDC 662.215.12-398 

It is common to use explosives containing inert organic additives as binding or 
phlegmatizing agents. However, not much is known about the effects of these components on 
the detonation characteristics. Most papers give the detonation speeds of the mixtures 
[I-3], while the information on the pressure of the explosion products is limited and con- 
flicting. For examplej according to some sources [4] mixing an explosive with wax increases 
the detonation pressure~ while other sources [5, 6] quote the opposite result. 

We have used manganin transducers to identify the major features in the detonation of 
hexogen and TEN containing 6% of macromolecular compounds of the paraffin series. 

Detonation waves with planar fronts are produced in charges of these materials, and 
also in trotylj in each case of diameter 64 mm. In certain experiments the charge diameter 
was 84 mm. The ends of the charges were formed by materials differing in dynamic rigidity: 
copper~ aluminum, Plexiglas, and ethanol. The flat manganin transducers were insulated from 
the electrically conducting medium by layers of PTFE joined together with vacuum lubricant, 
and these were placed within the charge or at the boundary between the explosive and the 
end. The signals were recorded with an Si-75 oscilloscope and the pressure profile p(t) 
was determined from the calibration relationship of [7]. The detonation speed was measured 
with electrical contacts with an error of • 

Figure 1 shows p(t) recorded with the manganin transducers for phlegmatized TEN of 
density p = 1.655 g/cm s. Line 1 was recorded with the transducer inserted directly in the 
explosive at a distance 120 mm from the initiation surface. Line 2 characterizes the pres- 
sure change at the same distance from the boundary with an aluminum plate. Figures 2 and 
3 show analogous curves respectively for phlegmatized hexogen (p = 1.66 g/cm s) and for 
trotyl (p = 1.56 g/cm s) with the same geometry. Lines 1 relate to the pressure within the 
charge, while lines 2 relate to the pressure at the boundary with the Plexiglas. The fluc- 
tuations in the first 0.15-0.25 ~sec correspond to wave reverberations in the insulation and 
in the transducer itself. 

Figures 1 and 2 show that the phlegmatlzed explosives have a horizontal part in the 
initial stage. Special experiments showed that the length of the plateau, behind which 
there is a fall in pressure, increases with the length of the charge and constitutes about 
1 ~sec in hexogen for L = 120 mm. 

Table 1 gives the initial density p, detonation speed D, observed plateau pressure 
within the explosion products EP within the charge, and the same at the boundaries with 
copperj aluminum, Plexiglas (P1), and ethanol (et). The bottom lines in the entries for the 
experimental pressures are the numbers of experiments used in the averaging. 

We constructed the retardation and expansion branches for the EP from these experi- 
mental results in terms of a plot of pressure p against mass velocity u. The detonation 
pressure p* in the last column of Table 1 was determined from the point of intersection of 
these curves with the detonation ray p = pDu; this column also gives in parentheses the 
published data on the pure explosives. 

Table 1 shows that 6% phlegmatizer substantially reduces the detonation pressure. On 
the other hand, the detonation speed is not reduced and even increases somewhat. For ex- 
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